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Abstract
Using thermodynamic perturbation theory, we derive a simple formalism for
treating intrinsic anharmonic effects in solids. In this formalism, the central
quantity is the intrinsic anharmonicity parameter a, which can be derived from
vibrational spectroscopy or computer simulation. Advantages of our approach
include (1) correct low- and high-temperature behaviour, (2) analyticity of all
the thermodynamic functions and (3) the possibility of systematic incorporation
of higher-order anharmonic effects. This approach can be used in studying
equations of state and thermodynamics of solids in a wide temperature range.
A detailed comparison with other approaches is given.

1. Introduction

The quasiharmonic approximation traditionally plays a central role in thermodynamic
modelling and theory of equations of state of solids. In this approximation, thermodynamic
properties are calculated from the vibrational spectrum, which is assumed to depend only on
volume and not on temperature. However, the intrinsic anharmonic effects, ignored in this
approximation and leading to the temperature dependence of phonon frequencies, become
important at high temperatures (especially at low pressures). To illustrate this point, figure 1
shows experimental thermal expansion of MgO at 1 bar (circles) and ab initio calculations at 0,
50, 100, and 150 GPa in the quasiharmonic approximation and with the inclusion of intrinsic
anharmonic effects. One can see that above 2000 K quasiharmonic theory grossly overestimates
thermal expansion, but inclusion of intrinsic anharmonic effects restores agreement with
experiment.

The treatment of intrinsic anharmonicity is a non-trivial problem, with no well established
solution. Here we propose a simple approach based on thermodynamic perturbation theory
of an anharmonic oscillator, derive the necessary equations, and perform numerical tests
comparing results of our present approach with other approaches. The present formulation
has correct behaviour in the low- and high-temperature limits and can be readily used in fitting
equations of state and extrapolating thermodynamic properties of solids.
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Figure 1. Thermal expansion of MgO. Results are presented for 0, 50, 100, and 150 GPa (from
top to bottom): solid curves—calculations with intrinsic anharmonicity [1]; dashed curves—
quasiharmonic model [1]; crosses—quasiharmonic calculations [2, 3]. Circles—experimental data
at 1 bar [4].

2. Treatments of intrinsic anharmonicity

2.1. Classical treatment

The simplest way of treating intrinsic anharmonicity takes advantage of the fact that in the high-
temperature expansion of the anharmonic free energy the lowest-order term is quadratic [5–7].
Ignoring higher-order terms, one writes

Fanh(V , T )

3nkB
= 1

2
aT 2, (1)

where n is the number of atoms in crystal, kB is the Boltzmann constant, and a is the so-
called intrinsic anharmonicity parameter. Equation (1) contains an assumption that intrinsic
anharmonic contributions from different modes are additive. This is clearly a simplification,
but it has roots in physically sound arguments of Wallace [8]. To account for the strong
decrease of intrinsic anharmonicity with pressure, the following volume dependence is usually
assumed [5]:

a = a0

(
V

V0

)m

, (2)

where a0 is the intrinsic anharmonicity parameter at standard conditions, and m = d ln a
d ln V is a

constant.
One can easily find other anharmonic thermodynamic properties, such as the entropy,

energy, isochoric heat capacity, thermal pressure, and bulk modulus:

Sanh

3nkB
= −aT,

Eanh

3nkB
= −1

2
aT 2,

CV anh

3nkB
= −aT,

Panh

3nkB
= −1

2
a

m

V
T 2, KT a = Pa(1 − m).

(3)

In equation (1), third- and higher-order terms are neglected. The validity of restricting the
anharmonic free energy to the quadratic term can easily be tested. For this purpose we have
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Figure 2. Intrinsic anharmonic free energy of MgO. Simulations were based on a rigid-ion
pair potential model with atomic charges of +1.74 and −1.74 for Mg and O, respectively, and
Buckingham short-range potentials (Oganov, unpublished) that were fitted to experimental data,
but proved to describe ab initio energy surfaces well. A short-range cut-off of 8.4 Å and long-
range corrections were used. Simulations were performed on the cubic 512-atom supercell, with
1 fs timestep, 10 ps equilibration, and 20 ps production time. Calculations were performed at
temperatures between 0 and 3000 K, with a 250 K interval. Tests with more accurate computational
settings (4096-atom cell, 14.6 ps equilibration, 50 ps production, 10 Å cut-off) indicate that errors
of our calculated anharmonic energies are about 3%.

performed molecular dynamics simulations of MgO at a series of temperatures and constant
volume corresponding to the experimental volume at ambient conditions. Such simulations
are fully anharmonic and give direct access to the intrinsic anharmonic internal energy, from
which we calculated the free energy. As can be seen from figure 2, quadratic term (1) is indeed
dominant in the anharmonic free energy up to the melting point. Third- and fourth-order terms
become non-negligible at very high temperatures, but Fanh still can be fitted well by a quadratic
function (1). For the internal energy, higher-order terms amount to more than a half of the
quadratic term at 3000 K.

The model just discussed works well at high temperatures and has been widely
used [1, 5, 9]. However, there are problems: the linear anharmonic heat capacity equation (3)
would overwhelm the harmonic term at low temperatures, leading to large errors in the thermal
expansion coefficient and the Grüneisen parameter below ∼100 K.

The problem is that equations (1) and (3) are classical and completely ignore quantum
vibrational effects, which determine low-temperature thermodynamics. Inclusion of quantum
effects should suppress anharmonicity at low temperatures; e.g., for Debye crystals CV a ∼ T 4,
and not CV a ∼ T as it was in the classical equation (3). We are interested in a formalism
that would include quantum effects and would lead to the correct classical limit (1) at high
temperatures.

2.2. Quantum treatments

Wallace’s theory. Wallace [8] has shown that in the first approximation intrinsic anharmonic
effects can be incorporated by using the true (i.e. temperature-dependent) vibrational
frequencies ω (or characteristic temperatures �V T = h̄ω/kB) and substituting them into the
(quasi)harmonic expression for the entropy of a harmonic oscillator. In the Einstein model
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with 3nkB oscillators one has

S(V , T )

3nkB
= − ln

(
1 − exp

−�V T

T

)
+

�V T

T (exp(�V T /T ) − 1)
. (4)

Equation (4) contains quasiharmonic and intrinsic anharmonic contributions, both of which
include the desired quantum effects. We follow Gillet et al [7] and define the temperature-
dependent characteristic temperature as

�V T = θ exp(aT ), (5)

where θ is the quasiharmonic (only volume-dependent) characteristic temperature, and the
exponential factor contains the intrinsic anharmonicity parameter, the same as in equations (1)–
(3). Equation (5) thus defines the physical meaning of this parameter as the logarithmic
derivative of the vibrational frequency (or characteristic temperature) with respect to volume:

a =
(

∂ ln ωV T

∂T

)
V

=
(

∂ ln �V T

∂T

)
V

. (6)

From equation (4) one can calculate the heat capacity CV and (by integration) all the other
thermodynamic properties. In the classical limit

(
�V T

T → 0
)

equations (1) and (3) are easily
derived from (4). For the anharmonic free energy, Wallace’s approach gives only the T 2-term;
higher-order terms are absent.

Unfortunately, only S and CV can be determined analytically in this approach—all the
other functions have to be calculated using numerical integration. Due to this inconvenience,
Wallace’s approach has not been used as widely as it deserves (see [7] for some applications).
On a fundamental level, Wallace’s theory justifies equation (1), shows the physical meaning of
the intrinsic anharmonicity parameter, and indicates that mode anharmonic contributions are
approximately additive.

F-model. It would be more convenient if one could use quasiharmonic equations with
temperature-dependent vibrational frequencies, but starting from the Helmholtz free energy,
instead of the entropy—thus avoiding non-analytical integrals. This approach lacks the rigour
of Wallace’s theory and inevitably leads to slightly different results [8, 10], but has been widely
used (see, e.g., [11]). We [10] found that, in order to give the correct classical limit (1), the
temperature dependence of the frequencies should be modified:

�̃V T = θ exp( 1
2 aT ). (7)

Then for the free energy one has

F(V , T )

3nkB
= 1

2
�̃V T + T ln

(
1 − exp

−�̃V T

T

)
, (8)

from which all the other thermodynamic functions can be derived (see [10] for analytical
expressions).

Like Wallace’s theory, this model (which we call the F-model, because it starts with the
Helmholtz free energy F) incorporates quantum effects both in the quasiharmonic and intrinsic

anharmonic contributions and has the correct classical limit (at �̃V T
T → 0).

Deficiencies of the existing quantum treatments. Apart from the already mentioned problems,

both approaches share one problem: for a > 0, the ratio �V T
T (or �̃V T

T in the F-model) does
not decay to zero as T → ∞, but at very high temperatures grows to infinity, and therefore the
classical limit of equation (1) is never achieved. Both Wallace’s approach and the F-model
give meaningful results only at aT < 0.05.
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Below we suggest an approach based on thermodynamic perturbation theory [6], which
includes quantum vibrational effects, is computationally convenient (all the expressions are
analytical), and is well behaved at high temperatures.

3. New approach

Let us consider a weakly anharmonic oscillator, described by the potential

U = 1
2 kx2 + a3x3 + a4x4 + · · · , (9)

with k > 0 and where x is the displacement from equilibrium.
As a reference system we consider a harmonic oscillator:

U0 = 1
2 kx2. (10)

Using first-order thermodynamic perturbation theory [6],3 anharmonic free energy can be
calculated as follows:

Fanh = 〈U − U0〉0, (11)

where averaging is performed over configurations sampled by the harmonic oscillator.
Equation (11) suggests that effects of intrinsic anharmonicity can be described by additive
corrections to quasiharmonic results.

3.1. Expressions in terms of displacement moments

By applying first-order thermodynamic perturbation theory, one obtains

Fanh = 〈U − U0〉0 = 〈a3x3 + a4x4 + · · ·〉0 = a4〈x4〉0 + a6〈x6〉0 + a8〈x8〉0 + · · · . (12)

This expression is remarkable in that the moments of atomic displacements used are those of a
harmonic oscillator, and can be easily calculated. Since the harmonic reference potential (10)
is symmetric, only even-order terms are retained in (12). Higher-order moments become
significant only at very high temperatures, so within the limits of applicability of the first-order
perturbation theory it should be safe to consider only the first terms (often, the first term alone
is sufficient). At high temperatures 〈x4〉0 ∼ T 2, so the anharmonic free energy is quadratic in
temperature in the first approximation. Further terms in (12) are proportional to T 3, T 4, etc.

3.2. Expressions in terms of temperature

To make our expressions useful, one has to calculate the moments 〈x4〉0, 〈x6〉0, 〈x8〉0, . . ., for a
harmonic oscillator. Classical calculation of the moments would result in classical expressions
for the free energy; however, if the moments are derived using quantum mechanics, the resulting
thermodynamic quantities would automatically include the proper quantum corrections.

The internal energy E of a harmonic oscillator is a sum of kinetic (K ) and potential (U )
terms:

E = K + U. (13)

The time-averaged internal energy at constant T is given by Einstein’s formula:

〈E〉 =
(

1

2
kBθ +

kBθ

exp(θ/T ) − 1

)
= 2〈U〉 = 2〈K 〉, (14)

where the last two equalities follow from the virial theorem. As 〈U〉 = 1
2 k〈x2〉0, one can see

that
3 Here we use classical perturbation theory. However, in our case first-order quantum perturbation theory leads to
exactly the same results.
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〈x2〉0 = 1

k
〈E〉 = 1

k

(
1

2
kBθ +

kBθ

exp(θ/T ) − 1

)
. (15)

One can easily calculate higher-order moments. Below we derive 〈x4〉0. Using simple
manipulations,

〈E2〉 = 〈(U + K )2〉 = 〈U 2〉 + 2〈U K 〉 + 〈K 2〉
= 2〈U 2〉 + 2〈U〉〈K 〉 = 2〈U 2〉 + 2〈U〉2 = 2〈U 2〉 + 2 1

4 〈E〉2

and the well known (see e.g. [12]) relation

〈E2〉 = 〈E〉2 + kBCV T 2,

we arrive at the equality

〈U 2〉 = 1
4 〈E〉2 + 1

2 kBCV T 2,

and then

〈x4〉0 = 4

k2
〈U 2〉 = 1

k2
[〈E〉2 + 2kBCV T 2]. (16)

From (12) and (16), the anharmonic part of the free energy of an Einstein model to order T 2

can be written as follows:
Fanh

3n
= a4

k2
[〈E〉2 + 2kBCV T 2]. (17)

To make sure that (17) in the high-temperature limit reduces exactly to (1), one has to set
a4
k2 = a

6kB
, where a is the intrinsic anharmonicity parameter, so we finally have:

Fanh

3n
= a

6kB
[〈E〉2 + 2kBCV T 2]. (18)

From (18), one trivially obtains anharmonic zero-point energy in the first approximation:

Ezp
anh

3n
= a

24
kBθ2. (19)

Note that the expression in brackets contains thermal energy and heat capacity of a harmonic
oscillator with the characteristic temperature θ (not �V T or �̃V T ). For typical values of
parameters (a = 2 × 10−5 K−1, θ = 1000 K), this value amounts to only 0.17% of the
harmonic zero-point energy.

Equation (18), the central equation of this paper, has been derived within the first-order
thermodynamic perturbation theory. In the second order of thermodynamic perturbation theory
one obtains an additional order T 2 contribution, proportional to a2

3 and 〈x6〉0 [13]. However,
for practical purposes of fitting equations of state (18) is fully sufficient as it has correct limiting
behaviours and effectively mimics the full order T 2 expression by using the correct intrinsic
anharmonicity parameter.

4. Numerical tests—comparison between different approaches

Let us write explicitly the expressions for the most important functions, starting with the free
energy of (18):

Fanh

3nkB
= a

6

[(
1

2
θ +

θ

exp(θ/T ) − 1

)2

+ 2

(
θ

T

)2 exp(θ/T )

(exp(θ/T ) − 1)2
T 2

]
. (20)

Based on this, in the appendix we list expressions for anharmonic contributions to other
important thermodynamic functions.
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Assuming some ‘typical’ values of parameters, we can estimate these functions and
compare the results with those obtained using Wallace’s theory and the F-model (figure 3).
At low temperatures all these approaches display the correct quantum behaviour. It can be
seen that the present approach is the only one truly reducing to the classical limit at high
temperatures. Already at the characteristic temperature there is hardly any difference between
our approach and the classical one (figure 3), whereas the F-model and Wallace’s approach
remain distinctly different even at temperatures twice as high. In fact, the F-model and
Wallace’s approach never strictly attain the classical limit because of the pathological increase
of �V T

T at very high temperatures. The present approach has the advantages of giving correct
low- and high-temperature limits and of being analytical and easily extendable to incorporate
T 3-, T 4-, and higher-order terms. For fitting equations of state and thermodynamic properties
of crystals, the simple form (20) (or its generalization to an arbitrary phonon spectrum) should
usually be sufficient.

5. Discussion

The present formalism was developed mainly for applications to equations of state of solids.
The importance of intrinsic anharmonicity for equations of state has been stressed in many
works [1, 5, 7, 10, 14–16],but as some authors [17] maintain an opposite view,a clear discussion
is useful.

Some materials (solids with soft modes and liquids) are intrinsically anharmonic at a very
fundamental level: it is not possible to account for their stability within the quasiharmonic
approximation. However, most solids seem to be ‘weakly anharmonic’ and describable to some
extent by the quasiharmonic approximation; our perturbative approach is intended exactly
for this case, and only for these materials does a discussion of the importance of intrinsic
anharmonicity make sense. Our discussion will be illustrated by results on MgO.

The intrinsic anharmonicity parameter a is usually small (for MgO theoretical and
experimental values are in the range (1–2)×10−5 K−1 at ambient conditions) and, consequently,
the anharmonic contribution to F(V , T ) is small. In the case of MgO, we find that the
anharmonic part of the thermal pressure is also small (for MgO, at most −2 to −3 GPa near the
melting point [1]). However, for higher-order derivatives of F(V , T ) intrinsic anharmonicity
can be significant. Thermal expansion is a good example: as shown in figure 1, intrinsic
anharmonicity makes a major contribution to thermal expansion at 1 bar and high temperatures.
However, on compression intrinsic anharmonicity decreases, and in MgO its contribution to
thermal expansion becomes small at 50 GPa (see figure 1).

When fitting a P–V –T equation of state, it is highly desirable to include all available
experimental data, especially at 1 bar, where precise determinations can be made for many
properties. Ignoring intrinsic anharmonicity, one would either fail to reasonably describe
high-temperature data, or be forced to ignore these data.

As shown by Holzapfel [11], the three common definitions of the Grüneisen parameter γ

(via the thermal pressure Pth, thermal expansion α, and volume derivatives of the characteristic
temperatures)

γα(V , T ) = α
KT V

CV
(21a)

γP (V , T ) = Pth

Eth
V (21b)

γqh(V ) =
〈
− d ln θi

d ln V

〉
(21c)

(where Eth is thermal energy, and KT is the bulk modulus) are different whenever
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Figure 3. Anharmonic thermodynamic functions. These calculations are for a crystal with
two atoms in the unit cell and constant V = 11.248 cm3 mol−1. Other parameters used are
a = 2 × 10−5 K−1, m = 5, γ = 1.5, and θ = 1000 K. One can see a small anharmonic
zero-point pressure in the present approach (this is physically correct); this pressure component
was neglected in F-model and Wallace’s theory-based calculations, and is absent by definition in
classical treatment.

intrinsic anharmonicity is present4. The differences increase with temperature: note that
definitions (21a) and (21b) are now temperature dependent, whereas (21c) is not. The different

4 Except for the rather artificial case when intrinsic anharmonicity is volume-independent.
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curves—γα .

(This figure is in colour only in the electronic version)

definitions of the Grüneisen parameter, along with the corresponding logarithmic volume
derivatives,

q =
(

∂ ln γ

∂ ln V

)
T

, (22)

are shown in figure 4. One can see a significant temperature dependence (at constant volume)
of γα and γP . The corresponding q manifest a very strong temperature dependence even at
pressures as high as ∼150 GPa—quite contrary to the expectation of Stacey and Isaak [17]
that ‘q is also effectively independent of T at constant V ’.

To summarize, in certain situations (for liquids, soft-mode materials, or for high-order
properties such as α, γ , or q , especially at high temperatures) intrinsic anharmonicity can
play an important role. It is often necessary to account for intrinsic anharmonicity when
constructing accurate thermal equations of solids. The conventional classical approximation
(equations (1) and (3)) works well at high temperatures, but produces unphysical results in
the low-temperature region. Here we have derived a simple analytical formalism with correct
low- and high-temperature limits. This formalism can be used for constructing equations of
state of solids in a wide temperature range.
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Appendix. Anharmonic thermodynamic functions

Sanh

3nkB
= −a

2
× θ3

T 2
× exp θ

T (exp θ
T + 1)

(exp θ
T − 1)3

(A.1)
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Eanh

3nkB
= a

24
× θ2

T

× T exp 3θ
T + 9T exp 2θ

T − 12θ exp 2θ
T − 9T exp θ

T − 12θ exp θ
T − T

(exp θ
T − 1)3

,

(A.2)

Cvanh

3nkB
= −a

2
×

(
θ

T

)3

× exp θ
T (θ exp 2θ

T − 2T exp 2θ
T + 4θ exp θ

T + 2T + θ)

(exp θ
T − 1)4

, (A.3)

Panh

3nkB
= a

24
× mθ2(− exp 3θ

T − 9 exp 2θ
T + 9 exp θ

T + 1)

V (exp θ
T − 1)3

+
a

12

× γ θ2(T exp 3θ
T + 9T exp 2θ

T − 6θ exp 2θ
T − 9T exp θ

T − 6θ exp θ
T − T )

V T (exp θ
T − 1)3

.

(A.4)
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